An equivalence for the Riemann Hypothesis in terms of orthogonal polynomials

June 20-25, 2004

Canadian Number Theory Association VIII

David A. Cardon (BYU)
Outline:

1. Brief review of orthogonal polynomials.

2. Orthogonal polynomials related to \(\zeta(s) \).

3. Equivalence for RH with simple zeros in terms of orthogonal polynomials.

4. Remarks on proof.

Main Ideas: Approximate the Riemann \(\zeta \)-function with orthogonal polynomials.
Definition: A distribution function is a non-decreasing real-valued function such that its moments exist for all \(n = 0, 1, 2, \ldots \).

\[
\left(x \right) \phi p(x) b(x) d = \int_{\infty}^{\infty} \left((x) b, (x) d \right)
\]

Inner Product: The spectrum of \(\phi \) is the set \(\{ 0 < \varrho \} \) for all \(\varrho > 0 \) for all \(x = 0, 1, 2, \ldots \).

\[
\{ 0 < \varrho \} \left(\phi \right) \left(\varrho \right) = \int_{\infty}^{\infty} \left((x) b, (x) d \right) = 0
\]

Definition: A distribution function is a non-decreasing real-valued function such that its moments exist for all \(n = 0, 1, 2, \ldots \).
Real Orthogonal Polynomials

When the spectrum S is infinite, orthogonalize

$$\{ (x)^0 \}$$

using Gram-Schmidt

$$\sum_{k=0}^{\infty} x^k$$

When the spectrum S is finite, orthogonalize

Real Orthogonal Polynomials
\[
\mathcal{H}_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}
\]

Example - Hermite Polynomials:

\[
(x)_u \eta u \mathcal{P} = (x)^u d
\]

Orthogonal Polynomials:

\[
x_p \mathcal{P} x^{-\mathcal{P}}(x) b(x) d \infty \int \frac{\psi}{1} = \langle (x)b, (x)d \rangle
\]

Inner Product:

\[
\mathcal{P} \mathcal{P} = (\phi) S
\]

Spectrum:

\[
\mathcal{H} \mathcal{P} x^{-\mathcal{P}} \int \frac{\psi}{1} = (x) \phi
\]

Distribution Function:
Density Function:

\[(y - x) \sum_{|y| = -\infty}^{\infty} = (x) p \]

Discrete Spectrum:

\[Z = (\phi)^{S} \]

Distribution Function:

\[(y - x) \sum_{|y| = -\infty}^{\infty} = (x) p \]

Unit Step Function:

\[
\begin{cases}
0 < x & 1 \\
0 > x & 0
\end{cases} = (\mathcal{U}) n
\]

Example - Step Function
The Riemann hypothesis is true if and only if $\xi\left(\frac{z}{2}\right) = (z)\Xi$.

\[
\left(\frac{1}{2} + \frac{2}{\pi} \right)^s = \left(\frac{z}{2}\right)\Xi
\]

\[
\left(s\right)^\frac{1}{2}\frac{1}{2} \left(s^{-\frac{1}{2}} - \frac{1}{2} - s\frac{1}{2}\right) = (s)\xi
\]

\[
s_{u} = \left[s_{u}\right]_{\infty} = (s)\xi
\]

Riemann ξ-function
\[F(T) = \frac{1}{2} \int_{-\infty}^{\infty} f(z) dz \]

Distribution function related to \((\mathcal{L})_P\)
corresponds to $\frac{\pi}{2}$ and $\frac{\pi}{4}$ are positively oriented boundary of rectangular region with

\[\forall \varepsilon > 0, \quad |(\hat{n} + x)f| > 0 < (z)f \text{ is real for real } z \]

Let $(z)f$ be analytic in \mathbb{R} and satisfy

\[\{ \pi/2 \leq \hat{n} \leq \pi/4, \quad 0 \leq x : \mathbb{C} \ni \hat{n} + x = z \} = \mathbb{R} \]

\[\int_{\Gamma} \frac{\lambda z}{\lambda^2} = (\mathcal{L}) f \]

s-Distribution function related to $(\mathcal{L}) f$
Orthogonal polynomials related to zeros of $\Re(z)$ by $0 < \Re(z)$ in region (s). Let $f_p(z)$ be the orthogonal family relative to measure $d\mu$. Define $F(T)$ for $T > 0$.\[F(T) = \int_{\gamma<T} f(z) \, d\mu \]

with $\gamma < \infty + 1$.

The zeros label of $\Re(\xi)$ in the region is counting multiplicity. Orthogonal polynomials related to zeros of $\Re(z)$.\[\{(\gamma_i \xi - \gamma_n \xi) f + (\gamma_i \xi + \gamma_n \xi) f\} \bigcap_{0<\gamma_i \xi} + (\gamma_n \xi) f \bigcap_{0=\gamma_i \xi} = (\gamma) F \]

If $\Re(\xi) \neq T$, then $w_i < \infty$.
The Main Theorem

Theorem: The Riemann Hypothesis with simple zeros is true if and only if

\[
\lim_{n \to 1} \frac{(0)^{1+u \zeta d} z}{(z)^{1+u \zeta d}} \left[\prod_{i=1}^{\infty} \left(1+\frac{u \zeta d}{z} \right) \right] = \lim_{n \to 1} \frac{(0)^{u \zeta d}}{(z)^{u \zeta d}} \left[\prod_{i=1}^{\infty} \left(1+\frac{u \zeta d}{z} \right) \right]
\]

Note: The proof also shows that

\[
\lim_{n \to 1} \frac{(z/2)^{1+u \zeta d} z}{(z/2)^{1+u \zeta d}} = \lim_{n \to 1} \frac{(0)^{u \zeta d}}{(z)^{u \zeta d}} \left[\prod_{i=1}^{\infty} \left(1+\frac{u \zeta d}{z} \right) \right]
\]

true if and only if

The Main Theorem
1. Remarks about the proof

 1. Uses classical facts about real orthogonal polynomials. For example,

 (a) Zeros of \(p_n(z) \) are real and simple
 (b) Zeros of \(p_n(z) \) and \(p_{n+1}(z) \) interlace
 (c) Zeros of \(\{z\}^{\nu d} \) are related to \(S \)

2. The \(n \)th moments

\[
\mathcal{H}P(x) b(x) \int_{-\infty}^{\infty} = \langle (x) b, (x) d \rangle
\]

3. Inner product: Use fact that \(\mathcal{N}(T) \sim T \frac{\nu}{\lambda} \),

 Proof: Exist

\[
\mathcal{H}P u x \int_{-\infty}^{\infty} = u f
\]
Theorem.

This is one of the most important steps of the proof of the

\[
\int_0^\infty = \sum_{n=1}^{\infty} \frac{x^n}{n!} = \sum_{n=1}^{\infty} \frac{x^n}{n!}
\]

to show that

Proof: Use Carleman's Criterion. Make careful estimates

are "substantially equal".

\[
\cdots = u \int_0^\infty x^0 = u \int_0^\infty \phi P_u x = u \phi
\]

solve the moment problem

is determined. Thus, all distribution functions (x(h) that

\[
\cdots = u \int_0^\infty \phi P_u x = u \phi
\]

moments of the distribution function

Show the "Hamblenur moment problem"
Thespectrum of F consists of all γ such that $\gamma + i\gamma \theta$ is a zero of $\zeta(1/2 + iz)$. Label positive values of γ (without multiplicity) as $a_1 < a_2 < a_3 < \cdots$

Show that $a_k = \lim_{n \to \infty} x_{2n^{k-1}}$.

Label positive zeros of $p_n(x)$ as $x_{2n^2} > \cdots > x_{2n} > x_{2n^1}$.
6. The sequence of polynomials

\[p_n(z) \]

converges uniformly on compact sets to the entire function with simple real zeros corresponding to the real parts of the zeros of

\[\frac{z}{2} + \frac{1}{2} i \cdot \zeta \]

RH with simple zeros true,

\[\lim_{n \to \infty} \frac{p_n(z)}{z} = \prod_{1=0}^{\infty} \frac{(0)^{u \zeta d} \infty \leftarrow u}{(z)^{u \zeta d} \infty \leftarrow u} \]

\[\Leftrightarrow \text{RH with simple zeros true} \]

7. RH with simple zeros true

\[\lim_{n \to \infty} \frac{p_n(z)}{z} = \prod_{1=0}^{\infty} \frac{(0)^{u \zeta d} \infty \leftarrow u}{(z)^{u \zeta d} \infty \leftarrow u} \]

zeros of \(\frac{z}{2} + \frac{1}{2} i \cdot \zeta \).

Converges uniformly on compact sets to the entire function

\[\frac{(0)^{u \zeta d}}{(z)^{u \zeta d}} \]