Project 3
Due Thursday, November 30

In this project you will compare the function \(f(x) = \sin x \) to its Taylor polynomials (in \(x \)) \(P_1(x), P_3(x), P_5(x), P_7(x), \) and \(P_9(x). \)

Exercise 1 Plot \(f(x) \) and \(P_n(x) \) \((n = 1, 3, 5, 7, 9)\) on the interval \([0, 5]\). When you look at this particular plot, what is the largest interval of the form \([0, b]\) on which the graph of \(P_n(x) \) is indistinguishable from the plot of \(f(x)\)? (Your answer should be five different intervals, one for each of these five values of \(n \).)

Exercise 2 Use Taylor’s Theorem and the Lagrange form of the remainder to find intervals of the form \([0, b]\) (with \(b \) as large as you can) on which \(|P_n(x) - f(x)|\) is guaranteed to be less than or equal to 0.01. (Your answer should be five different intervals, one for each of the five values of \(n \).) By what factor did your application of Taylor’s Theorem in Exercise 2 underestimate the size of these intervals in each case?

Exercise 3 Using a computer or calculator, approximate the largest interval of the form \([0, b]\) on which \(|P_n(x) - f(x)|\) actually is less than 0.01. (Your answer should be five different intervals, one for each of the five values of \(n \).) By what factor did your application of Taylor’s Theorem in Exercise 2 underestimate the size of these intervals in each case?

Higher order Taylor polynomials in \(x \) do not always give better approximations of \(f \) than lower order Taylor polynomials in \(x \) when \(x \) is far from 0.

Exercise 4 For \(n = 1, 3, 5, \) and 7, approximate the smallest positive value of \(x \) for which \(|P_{n+2}(x) - f(x)| \geq |P_n(x) - f(x)|\).

No Maple worksheet is provided for this project. If you choose to use Maple to do this project, here are some hints you might find helpful:

- **Maple** commands end with semicolons and are executed by hitting the enter key.
- To evaluate \(\sin x \), type “\(\sin(x); \)” and hit the enter key. For example, to evaluate \(\sin(0.86) \), type “\(\sin(0.86); \)” and hit the enter key to see that the answer is .7578425629 (to 10 decimal places).
- The expression \(3x^2 + 6x + 7 \) should be typed “3*x^2+6*x+7”.
- To define a function \(g \) having the formula \(g(x) = x^4 - 7x \), you can type
 \[
 \text{“} g := x -> x^4-7*x; \text{”}
 \]
 and then hit the enter key. You can then apply this function to just about anything. For example, typing “\(g(0.45); \)” and hitting the enter key will produce the output -3.10899375.
• “abs(x)” means $|x|$.

• To plot the function f on the interval $[a, b]$, type “plot(f(x),x=a..b);” and hit the enter key. For example, typing “plot(abs(x),x=-1..2);” and hitting the enter key will plot $|x|$ for $x \in [-1, 2]$.

• You can plot several functions on the same set of axes. For example, typing “plot([abs(x),sin(x),g(x)],x=-1..3);” and hitting the enter key will plot $|x|$, $\sin x$, and $g(x)$ for $x \in [-1, 3]$.

• More information on various Maple commands can be found on the Help menu within Maple.