Poincaré-Bendixson Theorem

Lecture 39
Math 634
12/3/99

Definition A periodic orbit of a continuous dynamical system \(\varphi \) is a set of the form

\[
\{ \varphi(t, p) \mid t \in [0, T] \}
\]

for some time \(T \) and point \(p \) satisfying \(\varphi(T, p) = p \). If this set is a singleton, we say that the periodic orbit is degenerate.

Theorem (Poincaré-Bendixson) Every nonempty, compact \(\omega \)-limit set of a \(C^1 \) planar flow that does not contain an equilibrium point is a (nondegenerate) periodic orbit.

We will prove this theorem by means of 4 lemmas. Throughout our discussion, we will be referring to a \(C^1 \) planar flow \(\varphi \) and the corresponding vector field \(f \).

Definition If \(S \) is a line segment in \(\mathbb{R}^2 \) and \(p_1, p_2, \ldots \) is a (possibly finite) sequence of points lying on \(S \), then we say that this sequence is monotone on \(S \) if \((p_j - p_{j-1}) \cdot (p_2 - p_1) \geq 0 \) for every \(j \geq 2 \).

Definition A (possibly finite) sequence \(p_1, p_2, \ldots \) of points on a trajectory \(T \) of \(\varphi \) is said to be monotone on \(T \) if we can choose a point \(p \) and times \(t_1 \leq t_2 \leq \cdots \) such that \(\varphi(t_j, p) = p_j \) for each \(j \).

Definition A transversal of \(\varphi \) is a line segment \(S \) such that \(f \) is not tangent to \(S \) at any point of \(S \).

Lemma If a (possibly finite) sequence of points \(p_1, p_2, \ldots \) lies on the intersection of a transversal \(S \) and a trajectory \(T \), and the sequence is monotone on \(T \), then it is monotone on \(S \).

Proof. Let \(p \) be a point on \(T \). Since \(S \) is closed and \(f \) is nowhere tangent to \(S \), the times \(t \) at which \(\varphi(t, p) \in S \) form an increasing sequence (possibly
biinfinite). Consequently, if the lemma fails then there are times $t_1 < t_2 < t_3$ and distinct points $p_i = \varphi(t_i, p) \in \mathcal{S}$, $i \in \{1, 2, 3\}$, such that

$$\{p_1, p_2, p_3\} = \varphi([t_1, t_3], p) \cap \mathcal{S}$$

and p_3 is between p_1 and p_2. Note that the union of the line segment p_1p_2 from p_1 to p_2 with the curve $\varphi([t_1, t_2], p)$ is a simple closed curve in the plane, so by the Jordan Curve Theorem it has an “inside” \mathcal{I} and an “outside” \mathcal{O}. Assuming, without loss of generality, that f points into \mathcal{I} all along the “interior” of p_1p_2, we get a picture something like:

![Diagram showing the flow box](image)

Note that

$$\mathcal{I} \cup \overline{p_1p_2} \cup \varphi([t_1, t_2], p)$$

is a positively invariant set, so, in particular, it contains $\varphi([t_2, t_3], p)$. But the fact that p_3 is between p_1 and p_2 implies that $f(p_3)$ points into \mathcal{I}, so $\varphi(t_3 - \varepsilon, p) \in \mathcal{O}$ for ε small and positive. This contradiction implies that the lemma holds.

The proof of the next lemma uses something called a flow box. A flow box is a (topological) box such that f points into the box along one side, points out of the box along the opposite side, and is tangent to the other
two sides, and the restriction of φ to the box is conjugate to unidirectional, constant-velocity flow. The existence of a flow box around any regular point of φ is a consequence of the C^r-rectification Theorem.

Lemma No ω-limit set intersects a transversal in more than one point.

Proof. Suppose that for some point x and some transversal S, $\omega(x)$ intersects S at two distinct points p_1 and p_2. Since p_1 and p_2 are on a transversal, they are regular points, so we can choose disjoint subintervals S_1 and S_2 of S containing, respectively, p_1 and p_2, and, for some $\varepsilon > 0$, define flow boxes B_1 and B_2 by

$$B_i := \{ \varphi(t, x) \mid t \in [-\varepsilon, \varepsilon], x \in S_i \}.$$

Now, the fact that $p_1, p_2 \in \omega(x)$ means that we can pick an increasing sequence of times t_1, t_2, \ldots such that $\varphi(t_j, x) \in B_1$ if j is odd and $\varphi(t_j, x) \in B_2$ if j is even. In fact, because of the nature of the flow in B_1 and B_2, we can assume that $\varphi(t_j, x) \in S$ for each j. Although the sequence $\varphi(t_1, x), \varphi(t_2, x), \ldots$ is monotone on the trajectory $T := \gamma(x)$, it is not monotone on S, contradicting the previous lemma. \hfill \Box

Definition An ω-limit point of a point p is an element of $\omega(p)$.

Lemma Every ω-limit point of an ω-limit point lies on a periodic orbit.

Proof. Suppose that $p \in \omega(q)$ and $q \in \omega(r)$. If p is a singular point, then it obviously lies on a (degenerate) periodic orbit, so suppose that p is a regular point. Pick S to be a transversal containing p in its “interior”. By putting a suitable flow box around p, we see that, since $p \in \omega(q)$, the solution beginning at q must repeatedly cross S. But $q \in \omega(r)$ and ω-limit sets are invariant, so the solution beginning at q remains confined within $\omega(r)$. Since $\omega(r) \cap S$ contains at most one point, the solution beginning at q must repeatedly cross S at the same point; i.e., q lies on a periodic orbit. Since $p \in \omega(q)$, p must lie on this same periodic orbit. \hfill \Box

Lemma If an ω-limit set $\omega(x)$ contains a nondegenerate periodic orbit \mathcal{P}, then $\omega(x) = \mathcal{P}$.
Proof. Fix $q \in \mathcal{P}$. Pick $T > 0$ such that $\varphi(T, q) = q$. Let $\varepsilon > 0$ be given. By continuous dependence, we can pick $\delta > 0$ such that $|\varphi(t, y) - \varphi(t, q)| < \varepsilon$ whenever $t \in [0, 3T/2]$ and $|y - q| < \delta$. Pick a transversal \mathcal{S} of length less than δ with q in its “interior”, and create a flow box

$$B := \{ \varphi(t, x) \mid x \in \mathcal{S}, t \in [-\rho, \rho] \}$$

for some $\rho \in (0, T/4]$. By continuity of $\varphi(T, \cdot)$, we know that we can pick a subinterval \mathcal{S}' of \mathcal{S} that contains q and that satisfies $\varphi(T, \mathcal{S}') \subset B$. Let t_j be the jth smallest element of

$$\{ t \geq 0 \mid \varphi(t, x) \in \mathcal{S}' \}.$$

Because \mathcal{S}' is a transversal and $q \in \omega(x)$, the t_j are well-defined and increase to infinity as $j \uparrow \infty$. Also, by the lemma on monotonicity, $|\varphi(t_j, x) - q|$ is a decreasing function of j.

Note that for each $j \in \mathbb{N}$, $\varphi(T, \varphi(t_j, x)) \in B$, so, by construction of \mathcal{S} and B, $\varphi(t, \varphi(T, \varphi(t_j, x))) \in \mathcal{S}$ for some $t \in [-T/2, T/2]$. Pick such a t. The lemma on monotonicity implies that

$$\varphi(t, \varphi(T, \varphi(t_j, x))) \in \mathcal{S}'.$$

This, in turn, implies that $t + T + t_j \in \{ t_1, t_2, \ldots \}$, so

$$t_{j+1} - t_j \leq 3T/2. \quad (1)$$

Now, suppose that $t \geq t_1$. Then $t \in [t_j, t_{j+1})$ for some $j \geq 1$. For this j,

$$|\varphi(t, x) - \varphi(t - t_j, p)| = |\varphi(t - t_j, \varphi(t_j, x)) - \varphi(t - t_j, p)| < \varepsilon,$$

since, by (1), $|t - t_j| < |t_{j+1} - t_j| < 3T/2$ and since, because $\varphi(t_j, x) \in \mathcal{S}' \subseteq \mathcal{S}$, $|p - \varphi(t_j, x)| < \delta$.

Since ε was arbitrary, we have shown that

$$\lim_{t \uparrow \infty} d(\varphi(t, x), \mathcal{P}) = 0.$$

Thus, $\mathcal{P} = \omega(x)$, as was claimed. \qed

Now, we get to the proof of the Poincaré-Bendixson Theorem itself. Suppose $\omega(x)$ is compact and nonempty. Pick $p \in \omega(x)$. Since $\gamma^+(p)$ is contained in the compact set $\omega(x)$, we know $\omega(p)$ is nonempty, so we can pick $q \in \omega(p)$. Note that q is an ω-limit point of an ω-limit point, so, by the third lemma, q lies on a periodic orbit \mathcal{P}. Since $\omega(p)$ is invariant, $\mathcal{P} \subseteq \omega(p) \subseteq \omega(x)$. If $\omega(x)$ contains no equilibrium point, then \mathcal{P} is nondegenerate, so, by the fourth lemma, $\omega(x) = \mathcal{P}$.

4