Functions

1. Graph the function \(f(x) = \frac{\frac{1}{2} x^3 - 3}{3 + x} \). Also graph any horizontal asymptotes and vertical asymptotes.
 Answer:
 Graph \(\frac{\frac{1}{2} x^3 - 3}{3 + x} \)

 \[\left(x, \frac{\frac{1}{2} x^3 - 3}{3 + x} \right) \]

2. Let \(g(t) = \sqrt{(3 - t)} \) and let \(f(t) = t^{12} \). Find \(g \circ f \). Include the domain of this function.
 Answer:
 \[g \circ f(t) = \sqrt{(3 - t^{12})} \] You need \(|t| \leq \sqrt[6]{3} \).

3. A function \(f(x) = ax + b \) is called an oblique asymptote for a rational function \(g(x) \) if
 \[\lim_{x \to \pm \infty} (f(x) - g(x)) = 0 \]
 Graph the following rational function and show the horizontal, vertical and oblique asymptotes also.
 \(-\frac{3x^2 + 3}{2x - 3} \)
 Answer:
 Graph \(-\frac{3x^2 + 3}{2x - 3} \)

 \[\left(x, -\frac{3}{2} x - \frac{9}{4} - \frac{15}{4(2x - 3)} \right) \]
4. Simplify \(\sin(\arctan x) \).
 Answer:
 \[
 \frac{x}{\sqrt{1 + x^2}}
 \]

5. Simplify \(\cos(\arctan x) \).
 Answer:
 \[
 \frac{1}{\sqrt{1 + x^2}}
 \]

6. Find the decimal .37
 Answer:
 \[
 \frac{37}{99}
 \]

7. Let 0 < \(r \) < 1. Find a formula for \(\sum_{k=1}^{n} 9(1 + r)^{-k} \). Then take the limit as \(n \to \infty \).
 Answer:
 \[
 \sum_{k=1}^{n} 9(1 + r)^{-k} = \left(\frac{1}{1+r} \right)^{n+1} \frac{1+r^k}{r} \] and the limit as \(n \to \infty \) is \(9/r \).

8. Find \(\lim_{x \to \infty} \left(\sqrt{(1 + 6x + x^2)} - \sqrt{(1 + x)^2} \right) \)
 Answer:
 \[
 \lim_{x \to \infty} \left(\sqrt{(1 + 6x + x^2)} - \sqrt{(1 + x)^2} \right) = 2
 \]

9. Let \(f(x) = 2x^2 + 3x \). Show \(f \) is continuous at every value of \(x \).
 Answer:
 Let \(\varepsilon > 0 \) be given. Then
 \[
 \left| 2x^2 + 3x - (2y^2 + 3y) \right| \leq \left| 2|x + y||x - y| + 3|x - y| \right|
 \leq (6)(|x| + |y|)|x - y| + (6)|x - y| \text{ Then for } |x - y| < 1, \text{ it follows } |y| < |x| + 1. \text{ Therefore, for } |y - x| < 1,
 \[
 \left| 2x^2 + 3x - (2y^2 + 3y) \right| \leq 2(6)(2|x| + 1)|x - y|. \text{ Let } \delta < \min \left(1, \frac{\varepsilon}{2(6)(2|x| + 1)} \right). \text{ Then if } |y - x| < \delta, \text{ it follows } \left| 2x^2 + 3x - (2y^2 + 3y) \right| < 2(6)(2|x| + 1) \frac{\varepsilon}{2(6)(2|x| + 1)} = \varepsilon \text{ and so } f \text{ is continuous at } x.
 \]

10. Let \(f(x) = 3x^3 + 2 \sin x^2 - 11x \). Explain why there exists a point \(a \) such that \(f(a) = 0 \).
 Answer:
 The function is negative for large negative values of \(x \) and is positive for large positive values. Since the function is continuous, it follows from the intermediate value theorem that there exists a
solution to $f(x) = 0$.

11. Give an example of a function which is continuous at only one point.
Answer:
One such example is

$$f(x) = \begin{cases}
 x & \text{if } x \text{ is rational} \\
 0 & \text{if } x \text{ is not rational}
\end{cases}$$

12. Find $\lim_{x \to \infty} \frac{3x^2 + 3x + \cos x}{5x^2 + 3x + 4}$.
Answer:
$\frac{3}{5}$

13. Let f be any function defined on the integers. Show that f is continuous.
Answer:
Let $\varepsilon > 0$ be given. Then let $\delta = 1/4$. If $|x - y| < 1/4$ and x, y are integers, then they are the same integer and so $|f(x) - f(y)| = 0 < \varepsilon$.

14. Show that if $\lim_{n \to \infty} a_n = a$, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = a.$$

Answer:

$$\left| \frac{1}{n} \sum_{k=1}^{N} |a_k| + \frac{1}{n} \sum_{k=N+1}^{n} a_k - a \right| = \left| \frac{1}{n} \sum_{k=1}^{N} |a_k| + \frac{n-(N+1)}{n} \frac{1}{n-(N+1)} \sum_{k=N+1}^{n} a_k - a \right|$$

Let N be so large that if $k \geq N$, then $|a_k - a| < \varepsilon/2$. Then for such an N, the above is no larger than

$$\frac{1}{n} \sum_{k=1}^{N} |a_k| + \left(\frac{n-(N+1)}{n} \frac{1}{n-(N+1)} \sum_{k=N+1}^{n} a_k - \frac{n-(N+1)}{n} \sum_{k=N+1}^{n} a_k \right)$$

$$+ \frac{1}{n-(N+1)} \sum_{k=N+1}^{n} |a_k - a|$$

$$\left(\frac{n-(N+1)}{n} \frac{1}{n-(N+1)} \sum_{k=N+1}^{n} |a| + \varepsilon/2 \right)$$

$$+ \frac{1}{n-(N+1)} \sum_{k=N+1}^{n} |a_k - a|$$

$$\left(\frac{n-(N+1)}{n} \frac{1}{n-(N+1)} \sum_{k=N+1}^{n} |a| + \varepsilon/2 \right)$$

$$+ \frac{1}{n-(N+1)} \sum_{k=N+1}^{n} \varepsilon/2$$

The first two terms converge to 0 as $n \to \infty$ and the last term equals $\varepsilon/2$.
15. Suppose for large \(n \), \(a_{n+1} = 9a_n - 8a_{n-1} \). Assuming the limit exists, find all possible values of this limit.

\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n}.
\]

Answer: 8, 1

16. Show using the binomial theorem that \(\left(1 + \frac{4}{n} \right)^n \) is increasing.

Answer:

\[
\left(1 + \frac{4}{n} \right)^n = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{4}{n} \right)^k = \sum_{k=0}^{n} \frac{4^k}{k!} \frac{n}{n} \frac{(n-1)}{n} \frac{(n-2)}{n} \ldots \frac{(n-k+1)}{n} \\
\leq \sum_{k=0}^{n+1} \frac{4^k}{k!} \frac{n}{n+1} \frac{n}{n+1} \frac{(n-1)}{n+1} \frac{(n-2)}{n+1} \ldots \frac{(n-k+1)}{n+1} = \left(1 + \frac{4}{1+n} \right)^{n+1}.
\]

17. Show \(\lim_{n \to \infty} \frac{7^n}{n!} = 0 \).

Answer:

For all \(n \) large enough

\[
\left(b^{n+1}/(n+1)! \right)/\left(b^n/(n)! \right) < \frac{1}{2}
\]

and so there exists a constant such that

\[
\frac{b^{n+r}}{(n+r)!} \leq C \frac{1}{2^r}
\]

Hence this converges to 0.

18. Find \(\lim_{n \to \infty} 10^{\frac{1}{n}} \).

Answer:

\(\lim_{n \to \infty} 10^{\frac{1}{n}} = 1 \)

19. Show \((1 + \frac{1}{n})^n \) is bounded above by 3 and the sequence is increasing.

Answer:

It is true for \(n = 1, 2, 3 \). Let \(n > 3 \). \((1 + \frac{1}{n})^n = 1 + 1 + \frac{n(n-1)}{2n^2} + \sum_{k=3}^{n} \binom{n}{k} \frac{1}{n^k} \)

\[
\leq 2.5 + \sum_{k=3}^{n} \frac{1}{k} \leq 2.5 + \sum_{k=3}^{n} \frac{1}{k(k-1)}.
\]

Now \(\frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k} \) and so this sum reduces to \(\frac{1}{2} \).

Hence 3 is an upper bound as claimed. Why is the sequence increasing?

\[
\left(1 + \frac{1}{n} \right)^n = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} \\
\leq \sum_{k=0}^{n+1} \frac{n+1}{n+1} \frac{n}{n+1} \frac{n+2-k}{n+1} \frac{1}{k!} \\
= \left(1 + \frac{1}{n+1} \right)^{n+1}
\]
20. Show that for large n and b a positive integer, \(\left(1 + \frac{b}{n}\right)^n \leq 3^b \).

Answer:

You first show that \(n \to \left(1 + \frac{b}{n}\right)^n \) is increasing. Then note that

\[
(1 + \frac{1}{n})^{(b)(n)} = \left(1 + \frac{b}{(b)(n)}\right)^{(b)(n)} \leq 3^b.
\]

Thus \(\left(1 + \frac{b}{n}\right)^n \leq \left(1 + \frac{b}{b\cdot n}\right)^{b\cdot n} \leq 3^b \).