Harmonic univalent mappings onto asymmetric vertical strips

Michael John Dorff

January 1998

Abstract

Let \(\Omega_\alpha \) be the asymmetrical vertical strips defined by \(\Omega_\alpha = \{ w : \alpha - \frac{\pi}{2} < \text{Re} \ w < \alpha\} \), where \(\pi/2 \leq \alpha < \pi \), and let \(D \) be the unit disk. We characterize the class \(S_H(D, \Omega_\alpha) \) of univalent harmonic orientation-preserving functions \(f \) which map \(D \) onto \(\Omega_\alpha \) and are normalized by \(f(0) = 0 \), \(f'(0) = 0 \), and \(f_z(0) > 0 \). Then we use this characterization to demonstrate a few other results.

1 Introduction

Let \(S_H \) be the class of complex-valued harmonic functions \(f \) which are univalent and orientation-preserving mappings of the unit disk \(D = \{ z : |z| < 1 \} \) and are normalized by \(f(0) = 0 \) and \(f_z(0) = 1 \). Clunie and Sheil-Small [1] showed that functions in such a class have the form

\[
 f = h + g,
\]

where

\[
 h(z) = z + \sum_{k=2}^{\infty} a_k z^k \quad \text{and} \quad g(z) = \sum_{k=1}^{\infty} b_k z^k
\]

are analytic in \(D \). They also showed that the orientation-preserving condition implies that \(|b_1| < 1 \) and so \((f - b_1 f)/(1 - |b_1|^2) \in S_H \). Hence it is customary to just consider the subclass

\[
 S_H^0 = \{ f \in S_H \text{ with } f_z(0) = 0 \}.
\]

The uniqueness result of the Riemann Mapping Theorem does not extend to these classes of harmonic functions, and several authors have studied the subclass of functions that map \(D \) onto specific domains. In particular, Hengartner and Schober [3] considered the strip domain \(\Omega = \{ w : |\text{Im } w| < \pi/4 \} \). We will apply their results to derive a family
of functions that includes all mappings in S^O_D from D onto vertical strip domains that are asymmetric with respect to the imaginary axis. Using this, we will characterize all mappings in S^O_D whose image is either a right-half plane or the entire plane minus a slit lying on the negative real axis.

2 Asymmetric vertical strip mappings

In [3], Hengartner and Schober investigated the family $S^H(D, \Omega)$ of normalized harmonic univalent mappings from the unit disk D onto the horizontal strip $\Omega = \{ w : |\text{Im } w | < \pi/4 \}$. By the use of a rotation and a composition on their family of functions, we derive analogous results about the family of normalized univalent mappings from D onto the vertical asymmetric strips.

In particular, let $f \in S^H(D, \Omega_\alpha)$, the family of normalized univalent mappings from D onto the the vertical asymmetric strips $\Omega_\alpha = \{ w : \alpha - \pi/2 \sin \alpha < \text{Re } (w) < \alpha + \pi/2 \sin \alpha \}, \pi/2 \leq \alpha < \pi$. Recall that $f = h + g$, where h, g are in the space of analytic functions, $H(D)$, on D, and that $|a(z)| = |g'(z)/h'(z)| < 1$. Now, $f = \text{Re } (h + g) + i \text{Im } (h - g)$. So

$$h(z) - g(z) = \int \frac{h'(z) - g'(z)}{h'(z) + g'(z)} [h'(z) + g'(z)]dz$$

$$= \int 1 - a(z) \cdot \frac{1}{1 + a(z)} \cdot \varphi'(z)dz,$$

where $\varphi(z) = h(z) + g(z)$.

Now φ is the conformal map from D onto Ω_α, normalized by $\varphi(0) = 0$ and $\varphi'(0) > 0$. To see this, note that if we consider the map $F(w) = \zeta = \xi + i\eta = \varphi(f^{-1}(w))$, then f consists of the successive transformations $(u, v) \to (w, \overline{w}) \to (z, \overline{z}) \to (\varphi, \overline{\varphi}) \to (\xi, \eta)$ so that

$$\left(\frac{\partial \varphi}{\partial \overline{w}}, \frac{\partial \varphi}{\partial w} \right) = \left(\frac{1}{2}, -\frac{1}{2} \right) \left(\begin{array}{cc} h' + g' & 0 \\ 0 & \overline{h'} + \overline{g'} \end{array} \right) \left(\begin{array}{cc} \frac{h'}{\Delta} & -\frac{g'}{\Delta} \\ -\frac{\overline{g'}}{\Delta} & \frac{\overline{h'}}{\Delta} \end{array} \right) \left(\begin{array}{c} 1 \\ i \end{array} \right)$$

and thus $\frac{\partial \varphi}{\partial \overline{w}} = 1, \frac{\partial \varphi}{\partial w} = 0$ and $\frac{\partial h}{\partial \overline{w}} = \frac{|h'|^2 + |g'|^2}{\Delta}$, where $\Delta = |h'|^2 - |g'|^2 = \text{Re } [(h' + g')(h' - g')]$. Therefore, φ is a univalent map from D onto a vertical strip. Because of the normalization of φ, we see that φ is the map $(1/2) \log[(1+z)/(1-z)]$ rotated by $-iz$, composed with the Möbius transformation $(z + p)/(1 + pz)$, where $0 < p < 1$, and normalized.
Hence, any map \(f \) in \(S_H(D, \Omega_\alpha) \) is of the form

\[
 f(z) = \text{Re} \varphi(z) + i \text{Im} \int \frac{1 - a(z)}{1 + a(z)} \cdot \varphi'(z)dz.
\]

\[
 = \varphi(z) - 2i \int \frac{a(z)}{1 + a(z)} \cdot \varphi'(z)dz.
\]

(1)

Since \(a \) is in \(H(D) \), \(|a(z)| < 1 \) on \(D \), and \(a(0) = 0 \), we have

\[
 \frac{1 - a(z)}{1 + a(z)} = \int_{|\eta| = 1} \frac{1 + \eta z}{1 - \eta z} d\mu(\eta),
\]

where \(\mathcal{P} \) is the set of probability measures on the Borel sets of \(|\eta| = 1 \).

Definition 2.1. For \(z \in D \) and \(|\eta| = 1 \), define the kernel

\[
 K(z, \eta) = \int_0^z \frac{1 + \eta w}{1 - \eta w} \frac{1}{(1 + we^{i\alpha})(1 + we^{-i\alpha})} dw
\]

\[
 = \begin{cases}
 \frac{\cos \alpha}{2 \sin^2 \alpha} \log \left(\frac{1 + ze^{i\alpha}}{1 + ze^{-i\alpha}} \right) \left(1 + \eta e^{i\alpha} \right)
 + \frac{1}{i \sin \alpha} \left(\frac{ze^{i\alpha}}{1 + ze^{i\alpha}} \right), & \text{if } \eta = -e^{i\alpha} \\
 \frac{\cos \alpha}{2 \sin^2 \alpha} \log \left(\frac{1 + ze^{-i\alpha}}{1 + ze^{i\alpha}} \right)
 - \frac{1}{i \sin \alpha} \left(\frac{ze^{-i\alpha}}{1 + ze^{i\alpha}} \right), & \text{if } \eta = -e^{-i\alpha} \\
 \frac{1}{2i \sin \alpha} \left(\frac{1 - \eta e^{i\alpha}}{1 + \eta e^{i\alpha}} \right) \log \left(\frac{1 - \eta}{1 + \eta e^{i\alpha}} \right)
 - \frac{1}{2i \sin \alpha} \left(\frac{1 - \eta e^{-i\alpha}}{1 + \eta e^{-i\alpha}} \right) \log \left(\frac{1 - \eta}{1 + \eta e^{-i\alpha}} \right), & \text{if } \eta \neq -e^{\pm i\alpha}
 \end{cases}
\]

Define the family

\[
 \mathcal{F}_\alpha = \{ f : f(z) = \text{Re} \left[\frac{1}{2i \sin \alpha} \log \left(\frac{1 + ze^{i\alpha}}{1 + ze^{-i\alpha}} \right) \right]
 + i \text{Im} \int_{|\eta| = 1} K(z, \eta) d\mu(\eta), \mu \in \mathcal{P} \}
\]

where \(\mathcal{P} \) is the set of probability measures on the Borel sets of \(|\eta| = 1 \).

From our discussion above, we obtain an isomorphism between the family \(S_H(D, \Omega) \) from Hengartner and Schober [3] and the class \(S_H(D, \Omega_\alpha) \). Hence we have the following theorem.
Theorem 2.2. The following properties hold:

1. If f is a univalent harmonic and orientation preserving map from the unit disk D onto $\Omega_\alpha = \{w: \frac{\alpha - \pi}{2\sin\alpha} < \text{Re}(w) < \frac{\alpha}{2\sin\alpha}\}$ such that $f(0) = 0$ and $f_z(0) > 0$, then $f_z(0) = 1$.

2. The set $S(H, D, \Omega) \subset F_{\alpha}^*$ with $S(H, D, \Omega) = F_{\alpha}$.

3. If $f \in F_{\alpha}$, then $f(D)$ is either the strip Ω_{α}, a halfstrip, a triangle, or a trapezium.

3 Consequences

The results from the previous section yield a few nice consequences.

Theorem 3.1. Every right-half plane mapping $f \in S^0_H$ can be expressed as a limit of functions in F_{α}. In particular, f maps ∂D into the line $\text{Re} w = -\frac{1}{2}$.

Proof. This follows from the normality of the family S^0_H and an approximation theorem (theorem 3.7 in [1]).

Corollary 3.2. Let $f = h + g \in S^0_H$ be a right-half plane mapping. Then

$$f(z) = h(z) + g(z) - 2i \text{Im} g(z) = \frac{z}{1-z} - 2i \text{Im} \int_0^{2\pi} K(z, t) d\mu(t),$$

where

$$K(z, \eta) = \begin{cases}
-\frac{1}{2}z^2/(1-z)^2 & \text{if } \eta = 1 \\
\frac{z}{(1-\eta)(1-z)} + \frac{1}{(1-\eta)(1-\eta)} \log \left(\frac{1-z}{1-\eta z} \right) & \text{if } \eta \neq 1
\end{cases}$$

Proof. Let $f \in S(H, D, \Omega)$, where f is of the form in (1). The result follows from taking the limit of f as $\alpha \to \pi$.

Corollary 3.2 provides a general description for right-half plane mappings in S^0_H, so that in such cases we know that $h(z) + g(z) = z/(1-z)$. In a similar fashion, it has been shown that all slit mappings in S^0_H whose slit lie on the negative real axis have the property that $h(z) - g(z) = 1/(1-z)^2$ ([2] or see [4]). Corollary 3.3 provides another proof of this.
Corollary 3.3. Let \(f = h + \overline{g} \in S^\circ_H \) be a slit mapping whose slit lies on the negative real axis. Then

\[
h(z) - g(z) = \frac{z}{(1 - z)^2}.
\]

Proof. Sheil-Small (Remark 7 in [5]) showed that if \(f = h + \overline{g} \in S^\circ_H \) is starlike, then \(\hat{f} = \hat{h} - \hat{g} \) is convex in \(S^\circ_H \), where

\[
\hat{h}(z) = \int_0^z \frac{h(w)}{w} \, dw \quad \text{and} \quad \hat{g}(z) = \int_0^z \frac{g(w)}{w} \, dw.
\]

Let \(f = h + \overline{g} \in S^\circ_H \) be a slit mapping whose slit lies on the negative real axis. Then \(\hat{f} \) is convex. In particular, \(\hat{f} \) is a right-half plane mapping since the process \(\hat{f}(z) = \int_0^z f(w)/w \, dw \) makes the boundary of \(\hat{f} \) normal to the boundary of \(f \). Hence, by Corollary (3.2)

\[
\frac{z}{1-z} = \hat{h}(z) - \hat{g}(z) = \int_0^z \frac{h(w) - g(w)}{w} \, dw.
\]

Therefore,

\[
\frac{z}{(1 - z)^2} = h(z) - g(z).
\]

The author wishes to thank W. Hengartner and T. Suffridge for their helpful suggestions.

References