MATH 214

Chapter 16: Vector Calculus

0.1 Line Integrals

Consider a smooth plane curve \(C\) in the space given by the parametric equations
\[
x = x(t), \quad y = y(t), \quad z = z(t), \quad a \leq t \leq b
\]
(1)

or \(\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}\). Then, \(\mathbf{r}'\) is continuous and \(\mathbf{r}'(t) \neq 0\).

Construct a uniform partition of \([a, b]\) into \(n\) subintervals \([t_{i-1}, t_i]\) with a point \(t_i^*\) in it. Show Fig 1 book for corresponding partition along arc length parameter \(s\).

0.2 Definition 0.1: Line integral of Scalar Function \(f\) along \(C\)

- \(f\) is defined on smooth curve \(C\) given by equations (1)

Then,
\[
\int_C f(x, y, z) \, ds = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*, y_i^*, z_i^*) \Delta s_i
\]
is the line integral of \(f\) along \(C\), if this limit exists.

0.3 Theorem 0.1: Evaluation of Line Integral of a Scalar Function \(f\) along \(C\)

Discuss: Evaluation of arc length of curve \(C\) between \(a\) and \(b\).

The line integral of \(f\) along \(C\) can be evaluated as
\[
\int_C f(x, y, z) \, ds = \int_a^b f(x(t), y(t), z(t)) \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 + (\frac{dz}{dt})^2} \, dt
\]
0.4 Theorem 0.2: Line Integral of a Scalar Function f along C
with respect to x, y, and z

\[
\int_C f(x, y, z)\,dx = \int_a^b f(x(t), y(t), z(t))\,x'(t)\,dt
\]

\[
\int_C f(x, y, z)\,dy = \int_a^b f(x(t), y(t), z(t))\,y'(t)\,dt
\]

\[
\int_C f(x, y, z)\,dz = \int_a^b f(x(t), y(t), z(t))\,z'(t)\,dt
\]

0.5 Definition 0.2: Vector Field

If $E \subseteq \mathbb{R}^3$, then a vector field on \mathbb{R}^3 is a function F that assigns to each point (x, y, z) in E a three-dimensional vector $F(x, y, z)$. It can be expressed as

\[F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k \]

0.6 Definition 0.3: Flow Lines or Streamlines

The flow lines of a vector field F are the curves C in the space (or plane) such that the vectors in the vector field are tangents to these curves.

Alternative Definition:
The flow lines or streamlines of a vector field are the paths followed by particles whose velocity field is the given vector field.

More precisely, if

\[F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k \]

and a flow line curve C has the parametric representation $r(t) = (x(t), y(t), z(t))$ then the components of r satisfy the differential equation

\[\frac{dx}{dt}(t) = P(x(t), y(t), z(t)) \quad \frac{dy}{dt}(t) = Q(x(t), y(t), z(t)) \quad \frac{dz}{dt}(t) = R(x(t), y(t), z(t)) \]

0.7 Definition 0.4: Work Done to Move Particle with Force F
along C

\[W = \int_C F(x, y, z) \cdot T(x, y, z)\,ds = \int_C F \cdot T\,ds \]

where, $T(x, y, z)$ is the unit tangent vector at the point (x, y, z) on C.
0.8 Theorem 0.3: Work Done to Move Particle with Force F along C, Using a parametric Representation of C

$$W = \int_{a}^{b} F(x(t), y(t), z(t)) \cdot r'(t) \, dt = \int_{C} F \cdot dr$$

Show Why?

0.9 Definition 0.5: Line Integral of a Vector Field F along C

- F is a continuous vector field defined on C
- C is a smooth curve given by $r(t)$, $a \leq t \leq b$
Then, the line integral of the vector field F along C is given by

$$\int_{C} F \cdot dr = \int_{a}^{b} F(r(t)) \cdot r'(t) \, dt = \int_{C} F \cdot T \, ds$$

0.10 Alternative Representation of a Line Integral of a Vector Field F along C

- If $F(x, y, z) = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$
- $r(t) = \langle x(t), y(t), z(t) \rangle$
Then, $\int_{a}^{b} F(r(t)) \cdot r'(t) \, dt = \int_{C} P(x, y, z) \, dx + \int_{C} Q(x, y, z) \, dy + \int_{C} R(x, y, z) \, dz$

Show Why?

0.11 Theorem 1: Integration of Conservative Vector Fields

- C is a smooth curve given by $r(t)$ where $a \leq t \leq b$,
 . $r(a) = \langle x_1, y_1, z_1 \rangle$, and $r(b) = \langle x_2, y_2, z_2 \rangle$
- f is defined on a domain D containing C.
- f is differentiable and its gradient vector ∇f is continuous on C. Then,

$$\int_{C} \nabla f \cdot dr = f(r(b)) - f(r(a)) = f(x_2, y_2, z_2) - f(x_1, y_1, z_1)$$

Work on proof.
0.12 Alternative for Theorem 1: Integration of Conservative Vector Fields

- \(F \) is continuous on \(D \subseteq \mathbb{R}^3 \),
- \(D \) contains a smooth curve \(C \) given by \(r(t) \) where \(a \leq t \leq b \),
 \[r(a) = \langle x_1, y_1, z_1 \rangle, \text{ and } r(b) = \langle x_2, y_2, z_2 \rangle \]
- \(F \) is a conservative vector field in the domain \(D \). It means there is \(f \) such that \(F = \nabla f \).

Then,
\[
\int_C F \cdot dr = \int_C \nabla f \cdot dr = f(r(b)) - f(r(a)) = f(x_2, y_2, z_2) - f(x_1, y_1, z_1)
\]

Work on proof and discuss examples

0.13 Definition 1: Independence of Path

- \(F \) continuous vector field on \(D \).
- \(C_1 \) and \(C_2 \) two curves or paths contained in \(D \).
- \(C_1 \) and \(C_2 \) have the same initial and terminal point.

Then, the line integral \(\int_C F \cdot dr \) is **independent of path** if

\[
\int_{C_1} F \cdot dr = \int_{C_2} F \cdot dr
\]

0.14 Theorem 2:

\(\int_C F \cdot dr \) is independent of path in \(D \) if and only if \(\int_C F \cdot dr = 0 \) for every piecewise-smooth closed path \(C \) in \(D \).

Discuss proof.

A closed path is one for which its terminal point coincides with its initial point.

0.15 Corollary:

If \(F \) is a conservative vector field defined on \(D \) then, the line integral \(\int_C F \cdot dr \) is independent of path in \(D \).

Is the reciprocal statement true?
0.16 Definition 2: Open and Connected Sets

- D in $\mathbb{R}^{2,3}$ is open if for every point P in D there is a disk (or ball) with center on P that is contained in D.
- D is a connected set if any two points in D can be joined by a curve contained in D.

0.17 Theorem 3

- \mathbf{F} is a continuous vector field on an open connected region D.
- $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D.

Then \mathbf{F} is a conservative vector field on D (there is f such that $\nabla f = \mathbf{F}$)

0.18 Theorem 4: Property of a Conservative Vector Field.

- $\mathbf{F}(x, y) = \langle P(x, y), Q(x, y) \rangle$ is a conservative vector field on D.
- P and Q have continuous first-order partial derivatives on the domain D.

Then, for all (x, y) in D

$P_y(x, y) = Q_x(x, y)$

work on proof

0.19 Theorem 5: Easy Way to Identify a Conservative Vector Field.

- $\mathbf{F}(x, y) = \langle P(x, y), Q(x, y) \rangle$ is a vector field defined on an open and simply connected region D.
- P and Q have continuous first-order partial derivatives on the domain D.

If $P_y(x, y) = Q_x(x, y)$ for all (x, y) in D, then, \mathbf{F} is conservative.

How can we find the potential f corresponding to a conservative vector field?

Show examples
0.20 Theorem 6: Green’s Theorem

– C is positively oriented, piecewise smooth, simple closed curve in the plane and is the boundary of a region D.
– P and Q have continuous first order partial derivatives on an open region that contains D. Then,
\[\int_{C} P \, dx + Q \, dy = \int \int_{D} (Q_{x} - P_{y}) \, dA \]

0.21 Corollary 1: Green’s Theorem for Regions with a Hole

– If D is a region enclosed by two simple and piecewise smooth curves C_1 and C_2
– C_2 is contained in the region enclosed by C_1.
– C_1 is positively oriented (counterclockwise for this case), and C_2 has the same orientation as C_1
– P and Q have continuous first order partial derivatives on an open region that contains D.
Then,
\[\int \int_{D} (Q_{x} - P_{y}) \, dA = \int_{C_1} P \, dx + Q \, dy - \int_{C_2} P \, dx + Q \, dy \]

0.22 Corollary 2: Line Integral Over Complex Curves

– If D is a region enclosed by two simple piecewise and smooth curves C_1 and C_2
– C_2 is contained in the region enclosed by C_1.
– C_1 is positively oriented (counterclockwise for this case), and C_2 has the same orientation as C_1
– P and Q have continuous first order partial derivatives on an open region that contains D.
– $P_{y}(x, y) = Q_{x}(x, y)$ on the open region that contains D. Then,
\[\int_{C_1} P \, dx + Q \, dy = \int_{C_2} P \, dx + Q \, dy \]
0.23 Definition 3: Parametric Surfaces

Consider a region D in the uv-plane and functions $x = x(u, v)$, $y = y(u, v)$, and $z = z(u, v)$ defined on D. Then, the vector-valued function defined on D as

$$\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v))$$

is called a parametric equation of the parameters u and v and the set of points

$\{(x(u, v), y(u, v), z(u, v) : (u, v) \in D\}$ is called a parametric surface S corresponding to the vector function \mathbf{r}.

0.24 Definition 4: Normal Vector to a Parametric Surface

Consider a parametric surface S given by (2) defined on D. and $x = x(u, v)$, $y = y(u, v)$, and $z = z(u, v)$ have partial derivatives on D and

$$\mathbf{r}_u \times \mathbf{r}_v = \left\langle \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u} \right\rangle \times \left\langle \frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v} \right\rangle \neq 0,$$

on D

Then, the surface S is smooth and the normal vector to its tangent plane at $(x_0, y_0, z_0) = \mathbf{r}(u_0, v_0)$ is defined as $\mathbf{r}_u \times \mathbf{r}_v(u_0, v_0)$

0.25 Definition 5: Surface Area of S

If S is smooth parametric surface given by (2). Then, the surface area of S is defined as

$$A(S) = \int \int_D |\mathbf{r}_u \times \mathbf{r}_v| \, dA$$

0.26 Theorem 7: Surface Area of the Graph of $z = f(x, y)$

For $z = f(x, y)$, we can define the corresponding parametric equations as $x = x \quad y = y$, and $z = f(x, y)$.

If f has continuous partial derivatives, then the surface area of S is given by

$$A(S) = \int \int_D \sqrt{1 + z_x^2 + z_y^2} \, dA.$$
0.27 Definition 6: Surface Integral of a Scalar Function f

- If f is continuous on a region R containing the surface S.
- S is a smooth surface and r_u and r_v are nonparallel in D.

Then, the surface integral of f over the surface S is defined as

$$\int \int_S f(x, y, z) \, dS = \int \int_D f(r(u, v)) \left| r_u \times r_v \right| \, dA \quad (5)$$

In particular, if S is defined as $z = g(x, y)$, then

$$\int \int_S f(x, y, z) \, dS = \int \int_D f(x, y, g(x, y)) \sqrt{z_x^2 + z_y^2 + 1} \, dA \quad (6)$$

Work on Example 3 of the book.

0.28 Definition 7: Surface Orientation

A surface S for which there is a continuously varying unit vector n is called an oriented surface. The vector n provides an orientation.

For a closed surface S enclosing a solid E, positive orientation is defined as the one for which the normal vectors point out from E.

0.29 Definition 8: Surface Integral of Vector Fields

- F is a continuous vector field defined on oriented surface S with unit normal vector n,

then the surface integral of F over S is defined as

$$\int \int_S F \cdot S = \int \int_S F \cdot n \, dS \quad (7)$$

It is also called flux of F across S.

If S is given by the parametric function $r(u, v)$ then,

$$\int \int_S F \cdot S = \int \int_D F \cdot (r_u \times r_v) \, dA \quad (8)$$

Show this and work on Example 5 if time permits.
0.30 Theorem 8: Stoke’s Theorem

– S is an oriented piecewise-smooth surface, bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation.
– F is a vector field whose components have continuous partial derivatives on a region R that contains the surface S. Then,

\[\int_C \mathbf{F} \cdot d\mathbf{r} = \int_S \text{curl} \mathbf{F} \cdot d\mathbf{S} \] \hspace{1cm} (9)

Work on Example 1

Green’s theorem is a special case of Stoke’s Theorem. In fact,

\[\int_C \mathbf{F} \cdot d\mathbf{r} = \int_S \text{curl} \mathbf{F} \cdot d\mathbf{S} = \int_S \text{curl} \mathbf{F} \cdot k \, dA \] \hspace{1cm} (10)

0.31 Theorem 9: The Divergence or Gauss Theorem

– E is a simple solid region with surface boundary S.
– S has positive (outward) orientation.
– F is a vector field whose component functions have continuous partial derivatives on an open region R containing E. Then,

\[\int \int \int_E \text{div} \mathbf{F} \, dV = \int \int_S \mathbf{F} \cdot d\mathbf{S} = \int \int_S \mathbf{F} \cdot \mathbf{n} \, dS, \] \hspace{1cm} (11)

where \(\mathbf{n} \) is the unit outward normal vector to S

Work on Example 2