5.5 Self-Adjoint Operators and Sturm–Liouville EVP

Consider

$$I = \int_a^b \left[u(x) \frac{d^2 u}{dx^2} + 4 u(x) \right] dx$$

Using integration by parts twice (assuming u & v self-smooth)

$$\int_a^b \left[u(x) \frac{d^2 u}{dx^2} + 4 u(x) \right] dx = \int_a^b u(x) \frac{d^2 u}{dx^2} dx + 4 \int_a^b u(x) dx =$$

$$= \left[u(x) \frac{d u}{dx} \right]^b_a - \int_a^b u(x) \frac{d^2 u}{dx^2} dx + 4 \int_a^b u(x) dx =$$

$$= uv \bigg|^b_a - u v' \bigg|^b_a + \int_a^b u v'' dx + 4 \int_a^b u dx =$$

$$= \left(vu' - uv'\right) \bigg|^b_a + \int_a^b u \left(v'' + 4v \right) dx$$

$$\Rightarrow \int_a^b \left[u \left(v'' + 4v \right) - u \left(v'' + 4v \right) \right] dx = \left(vu' - uv' \right) \bigg|^b_a \tag{1.1}$$

Defining $L[u] \equiv \frac{d^2 u}{dx^2} + 4u$, where $L = \omega^2 + 4I$.

The last expression can be written as the differential operator.

$$\int_a^b \left(v L u \right)' - u L [v]' dx = \left[vu' - uv' \right] \bigg|^b_a \tag{1.2}$$
Consider now

\[I = \int_a^b v(x) \left[u''(x) + u'(x) + u \right] \, dx \]

Using integration by parts (assuming \(v(x) \) and \(u(x) \) are sufficiently smooth)

\[\int_a^b [u'' + u' + u] \, dx = \int_a^b vu'' \, dx + \int_a^b vu' \, dx + \int_a^b vu \, dx = \]

\[= vu'' \bigg|_a^b - \int_a^b vu'' \, dx + vu' \bigg|_a^b - \int_a^b vu' \, dx + \int_a^b vu \, dx = \]

\[= vu'' \bigg|_a^b - uv' \bigg|_a^b + \int_a^b vu'' \, dx + vu' \bigg|_a^b - \int_a^b vu' \, dx + \int_a^b vu \, dx = \]

\[= \int_a^b \left[u'' - u' + u \right] \, dx + \left. (vu'' - uv') \right|_a^b + vu' \bigg|_a^b \]

\[\therefore \quad \int_a^b [v[u'' + u'] - u[v'' + v'] - v'' + v'] \, dx = \left[vu'' - uv' \right] \bigg|_a^b + vu' \bigg|_a^b \]

(2.1)

or defining the differential operator:

\[\hat{\imath} [v] = v'' + v' + v \] and \(\hat{\imath} [u] = u'' + u' + u \).

we obtain

\[\int_a^b \left[u \hat{\imath} [v] - \hat{\imath} [v] \right] \, dx = \left[vu'' - uv' \right] \bigg|_a^b + vu' \bigg|_a^b \]

(2.2)
There is an important difference between the two integral formulas (1.2) and (2.2).

That is in the differential operator obtained after integrating by part twice (in a way that all derivatives are removed from the function $u(x)$)

i) In (1.2) the new differential operator \hat{L} acting over the function $V(x)$, is such that

$$\hat{L} = L.$$

ii) But in (2.1) this new differential operator \hat{L} acting over $V(x)$ is

$$\hat{L} = \frac{d^2}{dx^2} - \frac{d}{dx} + I = \frac{d^2}{dx^2} + \frac{d}{dx} + I = L$$

The operator $L[u]=u''+4u$ is a particular case of the Sturm–Liouville operator

$$L[u] = [p(x)u'(x)]' + q(x)u(x).$$

Where $p(x) \equiv 1$, $q(x) \equiv 4$.
However, the operator
\[\hat{L}[u] = u'' - u' + u \]
is not of Sturm-Liouville type.

\[\text{GREEN'S FORMULA.} \]

Theorem. If \(L[u] = (p(x)u'' + q(x)u) \) is the Sturm-Liouville operator and \(u(x) \in C^2[a,b] \) and \(p(x) \) is continuous then
\[\int_a^b [L[u] - vL[u]] \, dx = p(x) \left[uv' - vu' \right]_a^b \]

Proof.
\[\int_a^b \left[u \left((pu)' + qu \right) - v \left((pu)' + qu \right) \right] \, dx = \]
\[= \int_a^b \left[u (pu)' - v (pu)' \right] \, dx = \]
\[= b u v' \left|_a^b \right. - \int_a^b p u' v' \, dx + \int_a^b p u' v' \, dx = \]
\[= b u v' \left|_a^b \right. - \int_a^b p u' v' \, dx = \]
\[\left. p(x) \left[uv' - vu' \right] \right|_a^b \]

\[\int_a^b [L[u] - vL[u]] \, dx = p(x) \left[uv' - vu' \right]_a^b \]

This is called Green's formula.
The differential form of this formula is called Lagrange identity:

\[u L [v] - v L [u] = \left[\rho (x) \left(u'v - u v' \right) \right] \] \hspace{1cm} (5.1)

Definition. If an operator \(L \) satisfies (4.1) for any two functions \(u(x), v(x) \in C^2 \) and \(u \) and \(v \) satisfy boundary conditions such that the right hand side of (4.1) is zero or

\[\int_a^b \left[u L [v] - v L [u] \right] dx = 0 \] \hspace{1cm} (5.2)

then we will say that the operator \(L \) (corresponding to these boundary conditions) is **Self-Adjoint**.

Remark 1. If \(L \) is such that \(\hat{L} \) (obtained by interchanging \(u \) and \(v \)) is different than \(L \) and the BC's cancel the rhs, then \(\hat{L} \) is called the adjoint of \(L \) for these BC's.

Remark 2. A **self-adjoint operator** \(L \) is a concept similar to the concept of Symmetric matrix: \(A = A^T \)
Theorem. Consider the regular S-L EVP

\[
\begin{align*}
L \phi + \lambda \sigma(x) \phi &= [p(x) \phi']' + q(x) \phi + \lambda \sigma(x) \phi = 0 \quad (6.1) \\
\beta_1 \phi(a) + \beta_2 \phi'(a) &= 0 \quad (6.2) \\
\beta_3 \phi(b) + \beta_4 \phi'(b) &= 0 \quad (6.3)
\end{align*}
\]

The operator \(L \) defining (6.1) is self-adjoint for the boundary conditions (6.2) and (6.3): Dirichlet, Neumann, Robin or combinations of them.

Proof. In the Homework problems.

Application of the concept of self-adjoint operator

Orthogonality of eigenfunctions for the S-L EVP.

Let \(L \) = \([p(x) u']' + q(x) u \). be the S-L operator and \(\phi_n \) and \(\phi_m \) two eigenfunctions corresponding to eigenvalues \(\lambda_n \) and \(\lambda_m \) with \(\lambda_n \neq \lambda_m \).

Then,

\[
\int_a^b \left([\phi_n L \phi_n] - \phi_n L [\phi_m] \right) dx = \beta_1 \left(\phi_n \phi_n' - \phi_m \phi_m' \right) \bigg|_a^b = 0
\]

(Since \(\lambda_n \neq \lambda_m \))
Therefore,

\[0 = \int_{a}^{b} \left[\phi_m (-\lambda_n \sigma \phi_n) - \phi_n (-\lambda_m \sigma \phi_m) \right] dx = \]

\[= (\lambda_m - \lambda_n) \int_{a}^{b} \phi_n \phi_m \sigma(x) dx \]

Since \(\lambda_m \neq \lambda_n \) then,

\[\int_{a}^{b} \phi_n(x) \phi_m(x) \sigma(x) dx = 0 \]

or \(\phi_n(x) \) is orthogonal to \(\phi_m(x) \) with weight \(\sigma(x) \).
Thus, all the eigenvalues for a regular SL-EVP are real.

Proof.

First, we will prove that if λ is a complex eigenvalue with corresponding eigenfunction ϕ, then λ^* is also an eigenvalue with corresponding eigenfunction $\bar{\phi}$. In fact, if

$$L[\phi] + \lambda \sigma \phi = 0$$

\Rightarrow the conjugate equation is

$$L[\bar{\phi}] + \bar{\lambda} \sigma \bar{\phi} = 0,$$

where σ is real \hspace{1cm} (8.1)

Now, $L[\phi] = L[\bar{\phi}]$ (why?) \Rightarrow $L(\phi) + \bar{\lambda} \sigma \bar{\phi} = 0$ \hspace{1cm} (8.1)

And $\bar{\phi}$ satisfies the same BC's that ϕ satisfies

$$\beta_1 \bar{\phi}(a) + \beta_2 \bar{\phi}'(a) = 0, \quad \beta_1, \beta_2 \text{ are real.}$$

And $\beta_3 \bar{\phi}(b) + \beta_4 \bar{\phi}'(b) = 0$

Therefore, $\bar{\phi}$ satisfies a SL-EVP with eigenvalue λ^*.

On the other hand, $\lambda + \lambda^*$ and the orthogonality condition is verified

$$(\lambda - \lambda^*) \int_a^b \phi \bar{\phi} \sigma dx = (\lambda - \lambda^*) \int_a^b |\phi|^2 \sigma dx = 0$$

$\Rightarrow \phi(x) \equiv 0$ Contradiction. Thus, λ can't be complex.
Then- For each eigenvalue \(\lambda \), there is only one eigenfunction linearly independent.

Proof- Assume \(\phi_1(x) \) and \(\phi_2(x) \) are eigenfunctions corresponding to the same eigenvalue \(\lambda \) then,

\[
\phi_2 \ast \left[L(\phi_1) + \lambda \sigma \phi_1 = 0 \right]
\]
\[
\phi_1 \ast \left[L(\phi_2) + \lambda \sigma \phi_2 = 0 \right]
\]

\[
\phi_2 L(\phi_1) - \phi_1 L(\phi_2) = 0
\]

Using Lagrange identity

\[
0 = \phi_2 L(\phi_1) - \phi_1 L(\phi_2) = \frac{d}{dx} \left[\rho \left(\phi_2 \phi'_1 - \phi_1 \phi'_2 \right) \right]
\]

\[
\Rightarrow \rho \left(\phi_2 \phi'_1 - \phi_1 \phi'_2 \right) \text{ constant}
\]

Clearly, if \(\begin{cases} \phi_2(a) = 0, & \phi_2(b) = 0 \\ \phi_1(a) = 0, & \phi_1(b) = 0 \end{cases} \text{ or } \begin{cases} \phi_2(a) = 0, & \phi_2(b) = 0 \\ \phi_1(a) = 0, & \phi_1(b) = 0 \end{cases} \)

then \(\left(\phi_2 \phi'_1 - \phi_1 \phi'_2 \right)(a) = 0 \)

\[
\Rightarrow \left(\phi_2 \phi'_1 - \phi_1 \phi'_2 \right)(b) = 0 \]

\[
\Rightarrow \frac{d}{dx} \left(\frac{\phi_2}{\phi_1} \right) = 0
\]

\[
\Rightarrow \phi_2 = C \phi_1 \Rightarrow \phi_2 \text{ and } \phi_1 \text{ linearly independent.}
\]

For Robin B.C. the theorem is also true.