## Math 314 - Calculus of Several Variables - Winter 2022

### Class Information

Instructor: Tuan Pham
Class meetings:
• Section 4: MWF 12:00 - 12:50 PM at TMCB 112.
• Section 9: MWF 11:00 - 11:50 AM at TMCB 121.
Class meeting may be livestreamed/recorded upon request: Zoom link, camera control (ask instructor for code).
[Syllabus]   [Learning Suite]   [Class Schedule]   [Homework Schedule]   [WebAssign]
• ### Office Hours

M: 2:00 - 3:00, W, F: 1:00 - 2:00 at TMCB 316 (in person)
Tu: 12:00 - 1:00, Th: 11:00 - 12:00 on Zoom: office hours Zoom link

### Assignments

• Homework is to be submitted on Learning Suite. The schedule of homework assignments is in a link above.
• Optional online assignments are given on WebAssign (link above).
• ### Lecture notes

• Review for Final exam (Apr 13)
• Lecture 39 (Apr 11): Stokes theorem and Divergence theorem
• Lecture 38 (Apr 8): surface integral of a vector field
• Lecture 37 (Apr 6): surface integral of a scalar function
• Lecture 36 (Apr 4): parametrization of surfaces
• Lecture 35 (Apr 1): curl and divergence of a vector field
• Lecture 34 (Mar 30): Green's theorem
• Lecture 33 (Mar 28): fundamental theorem of Calculus (cont.)
• Lecture 32 (Mar 25): line integral of vector fields; fundamental theorem of Calculus
• Lecture 31 (Mar 23): more examples on line integral
• Lecture 30 (Mar 21): line integral
• Lecture 29 (Mar 16): more examples on spherical coordinates; vector fields
• Lecture 28 (Mar 14): more examples on cylindrical coordinates
• Lecture 27 (Mar 11): change of variables (cont.), cylindrical and spherical coordinates
• Lecture 26 (Mar 9): change of variables
• Review for Midterm II (Mar 7)
• Lecture 25 (Mar 4): triple integral
• Lecture 24 (Mar 2): double integral over a polar region
• Lecture 23 (Feb 28): double integrals over a general region
• Lecture 22 (Feb 25): double integrals
• Lecture 21 (Feb 23): Lagrange multipliers
• Lecture 20 (Feb 22): optimization problem
• Lecture 19 (Feb 18): applications of directional derivatives
• Lecture 18 (Feb 16): the chain rule, directional derivatives
• Lecture 17 (Feb 14): differential, the chain rule
• Lecture 16 (Feb 11): tangent plane and linear approximation
• Lecture 15 (Feb 9): geometric meaning of partial derivatives, tangent plane
• Lecture 14 (Feb 7): partial derivatives
• Lecture 13 (Feb 4): more on limit and continuity
• Lecture 12 (Feb 2): limit
• Review for Midterm I (Jan 31)
• Lecture 11 (Jan 28): domain, graph, level set
• Lecture 10 (Jan 26): motion, velocity, acceleration
• Lecture 9 (Jan 24): curvature, torsion
• Lecture 8 (Jan 21): tangent line, integral, curve length
• Lecture 7 (Jan 19): limit and derivative
• Lecture 6 (Jan 14): surfaces and curves
• Lecture 5 (Jan 12): equation of planes and lines
• Lecture 4 (Jan 10): cross product
• Lecture 3 (Jan 7): vectors, dot product, angle, projection
• Lecture 2 (Jan 5): plane, sphere, cylinder
• Lecture 1 (Jan 3): introduction
• ### Supplement materials

• Find line and surface integrals using Mathematica
• Finding surface area
• Find integrals using Mathematica
• Hints for Problem 14 of 14.8
• Optimization under constraints
• Solution to Midterm I
• Plot regions and level sets
• Plot surfaces and curves on Mathematica
• Access and first experiments on Mathematica This page was last modified on Wednesday, April 13, 2022